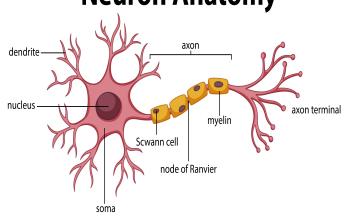
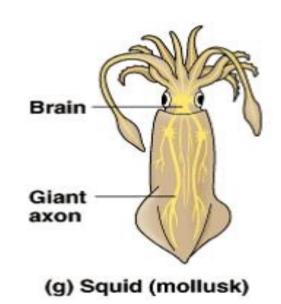


Numerical Approximations of the Hodgkin–Huxley Model

Neuron Anatomy



Miya Spinella



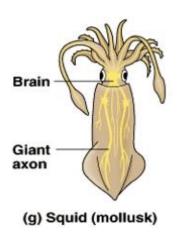
Overview

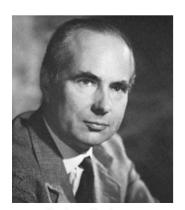
- **History** of the Hodgkin-Huxley Model
- **Background** information about neurons and action potentials
- Equations in the Hodgkin-Huxley Model
- Numerical Analysis of the Hodgkin-Huxley Model

History of Hodgkin-Huxley Model

- Describes the process of an action potential
- Created by Alan Lloyd Hodgkin and Andrew Huxley with research about modelling the action potentials through the squid giant axon
- Awarded Nobel Prize in 1963

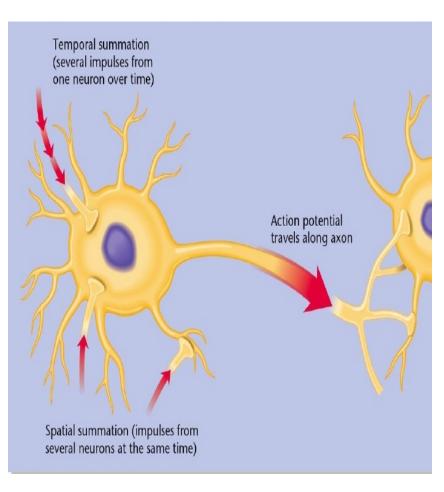
Alan Lloyd Hodgkin

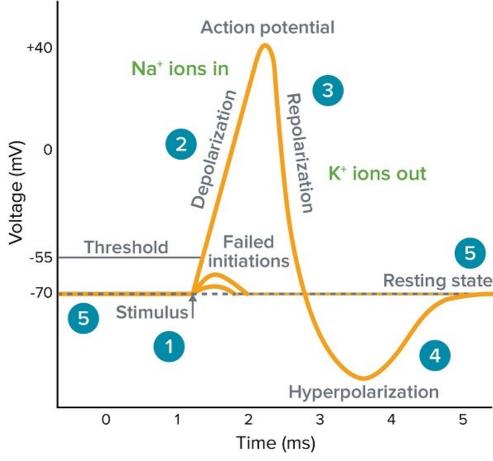




Andrew Huxley

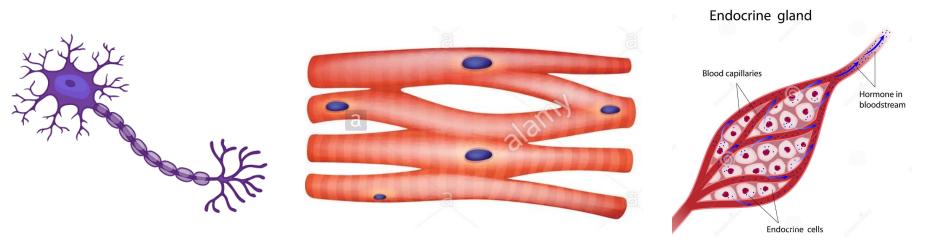
Action Potentials

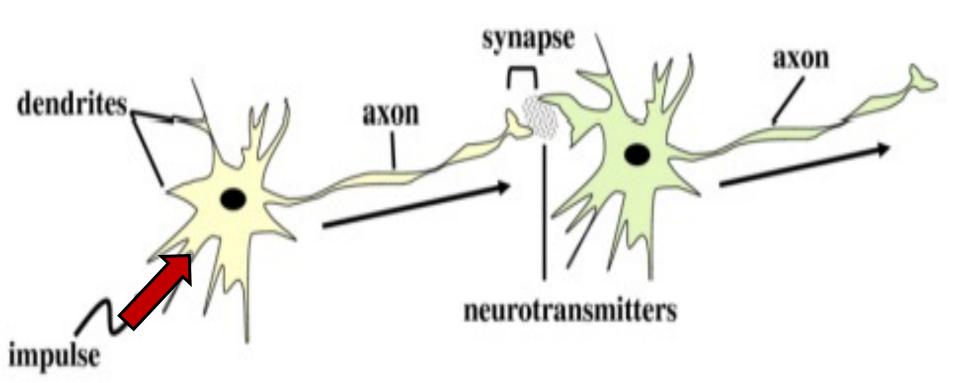




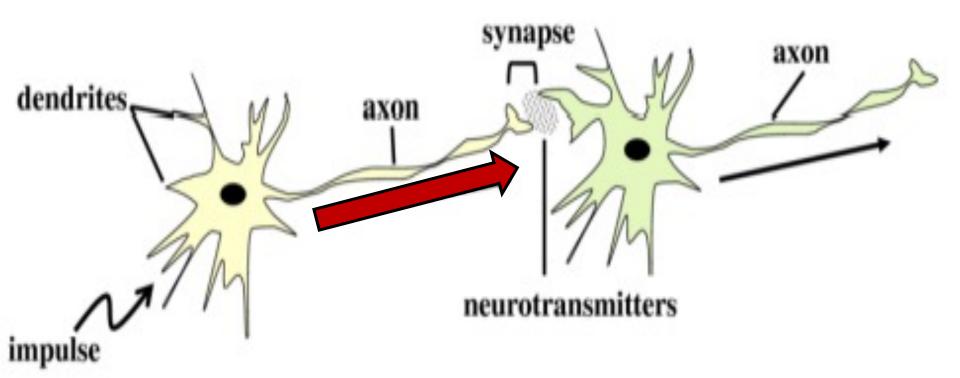
Action Potentials: Definition

- Explosion of depolarizing current moving across a cell
- Send impulses or signals to other cells to relay information
- Occurs in excitable cells

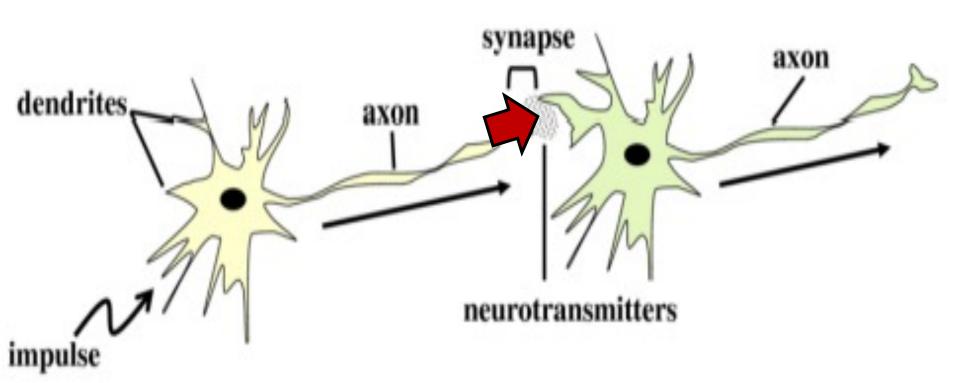




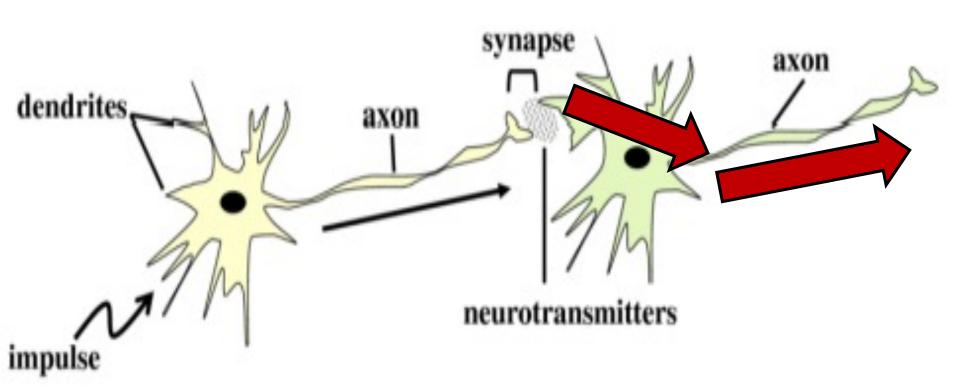
Signal Received!



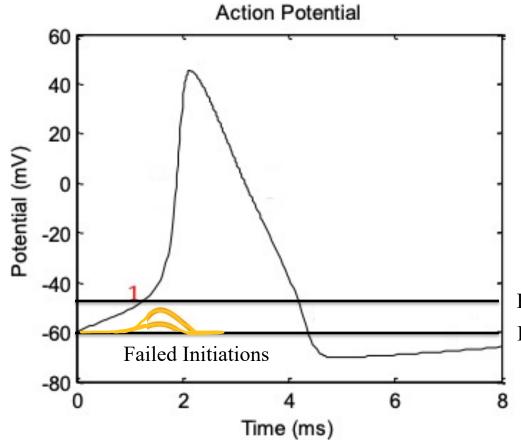
Signal Travels!



Action Potential Begins!

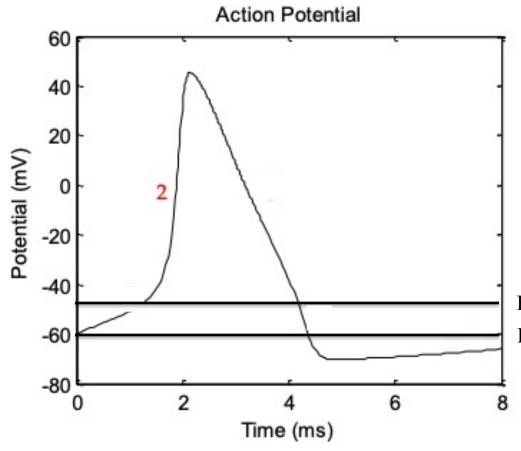


Cycle Continues!



Voltage increases until firing potential reached

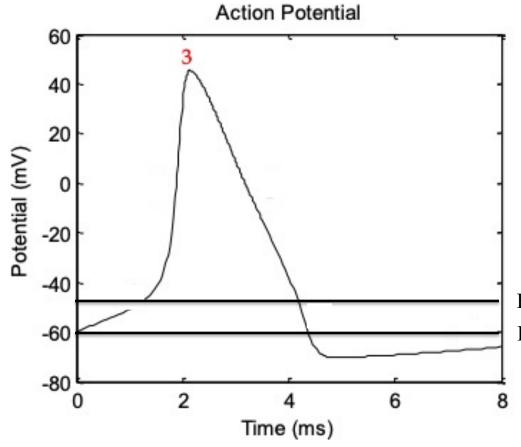
Firing Potential
Resting Potential (-65mV)



Depolarization Phase

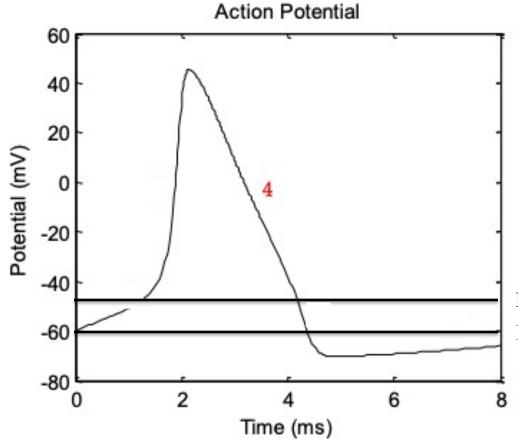
- Sodium channels open
- Sodium (Na+) enters cell
- Cell becomes more positive

Firing Potential Resting Potential (-65mV)



- Sodium channels close
- Maximum voltage reached

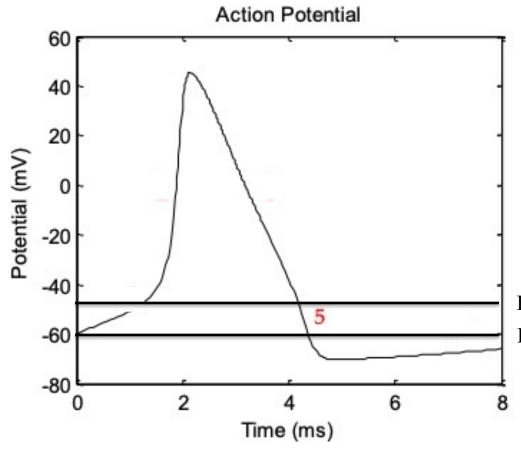
Firing Potential
Resting Potential (-65mV)



Repolarization Phase

- Potassium channels open
- Potassium (K+) exits cell
- Voltage decreases

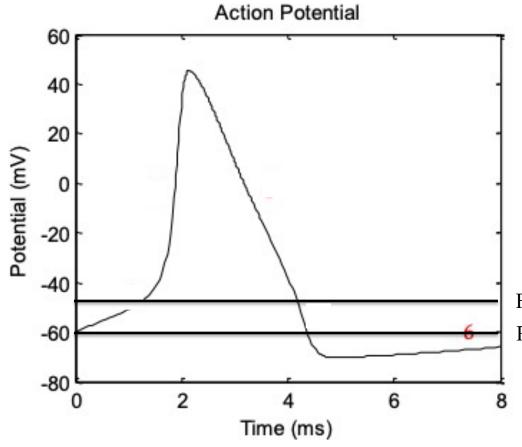
Firing Potential Resting Potential (-65mV)



Hyperpolarization Phase

- Potassium channels close
- Voltage decreases below resting potential

Firing Potential
Resting Potential (-65mV)



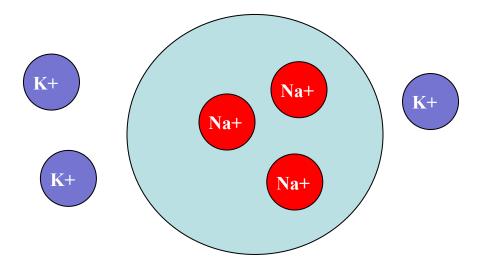
- Voltage slightly increases
- Voltage returns to resting potential

Firing Potential
Resting Potential (-65mV)

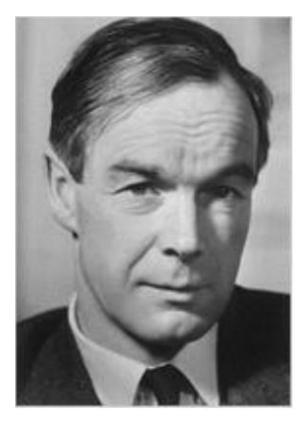
Other Action Potential Facts

• Action potentials are always the same size

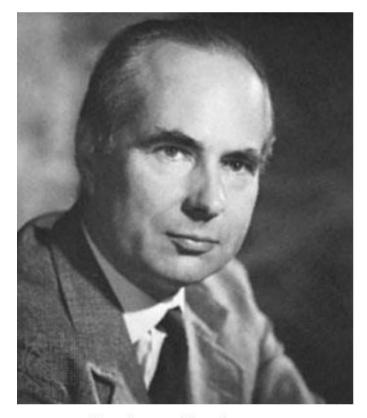
Membrane has increased conductivity during action potential



Hodgkin-Huxley Model



Alan Lloyd Hodgkin



Andrew Huxley

Purpose and Definition

- Mathematical model that describes how action potentials are fired in neurons
- Involves system of 4 nonlinear differential equations
 - $-\frac{dv}{dt}$ measures voltage difference between inside and outside of cell
 - $-\frac{dn}{dt}, \frac{dm}{dt}, \frac{dh}{dt}$ model the activation level of the ion channels
 - t represents time, v represents membrane potential

Model Equations

$$\frac{dv}{dt} = \frac{1}{C_m} \left(I - \overline{g}_{Na} m^3 h(v - E_{Na}) - \overline{g}_K n^4 (v - E_K) - \overline{g}_L (v - E_L) \right)$$

6 different supporting functions

$$\frac{dn}{dt} = \alpha_n(v)(1-n) - \beta_n(v)n$$

$$\frac{dm}{dt} = \alpha_m(v)(1-m) - \beta_m(v)m$$

$$\frac{dh}{dt} = \alpha_h(v)(1-h) - \beta_h(v)h$$

11 different constants

Ion Channel Constants

n, m, h

- 1. Dimensionless quantities between 0 and 1 associated with potassium channel activation, sodium channel activation, and sodium channel inactivation, respectively.
- 2. Defines gates for specific channel
 - eg. Sodium channel has 3 m gates and 1 h gate

Supporting Functions

$$\alpha_n(v) = \frac{0.01(v+50)}{1 - e^{\left(\frac{-(v+50)}{10}\right)}}$$

$$\beta_n(v) = 0.125e^{\left(\frac{-(v+60)}{80}\right)}$$

$$\alpha_m(v) = \frac{0.1(v+35)}{1 - e^{\left(\frac{-(v+35)}{10}\right)}}$$

$$\beta_m(v) = 4e^{(-0.0556(v+60))}$$

$$\alpha_h(v) = 0.07e^{(-0.05(v+60))}$$

$$\beta_h(v) = \frac{1}{1 + e^{(-0.1(v+30))}}$$

Rate constants for the n ion channel

Rate constants for the m ion channel

Rate constants for the h ion channel

Constants

Equilibrium Potentials			
$E_{Na} = 55.17 mV$	Sodium (Na) channels		
$E_K = -72.14mV$	Potassium (K) channels		
$E_L = -49.42mV$	Leakage (L) channels		

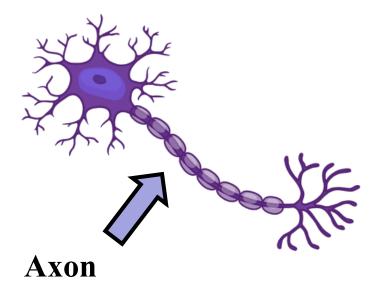
$$I = 0.1 \frac{\mu F}{cm^2}$$
Input current per unit area

 $C_m = 0.01 \frac{\mu F}{cm^2}$ Capacitance of the membrane

Maximum Conductance $\overline{g}_{Na} = 1.2 \frac{mS}{cm^2} \quad \text{all the sodium (Na) channels are open}$ $\overline{g}_{K} = 0.36 \frac{mS}{cm^2} \quad \text{all the potassium (K) channels are open}$ $\overline{g}_{R} = 0.003 \frac{mS}{cm^2} \quad \text{all the leakage (L) channels are open}$

Capacitance

- Capacitance "Ratio of the amount of electric charge stored on a conductor to a difference in electric potential"
- Axon membrane imagined as long thin cylindrical capacitor



 $C_m = 0.01 \frac{\mu F}{cm^2}$ Capacitance of the membrane

Maximum Conductance

- Conductance "potential for a substance to conduct electricity"
- Each \overline{g} is maximum conductance for a specified channel

$$\overline{g}_{Na} = 1.2 \frac{mS}{cm^2}$$

all the sodium (Na) channels are open

$$\overline{g}_K = 0.36 \frac{mS}{cm^2}$$

all the potassium (K) channels are open

$$\overline{g}_L = 0.003 \frac{mS}{cm^2}$$

all the leakage (L) channels are open

Equilibrium Potential

- Each *E* is equilibrium potential, or reversal potential, for a specified channel
- Equal to the voltage value required to form the boundary between the currents flowing inward and outward of cell

$E_{Na} = 55.17 mV$	Sodium (Na) channels
$E_K = -72.14mV$	Potassium (K) channels
$E_L = -49.42 mV$	Leakage (L) channels

Numerical Methods

Euler's Methods

Forward Euler	$y_{n+1} = y_n + \Delta t f(t_n, y_n)$
Backward Euler	$y_{n+1} = y_n + \Delta t f(t_{n+1}, y_{n+1})$
Modified Euler	$y_{n+1} = y_n + \frac{\Delta t}{2} (f(t_{n+1}, y_{n+1}) + f(t_n, y_n))$

- Simplest methods and involve little computational time
- However, some of the most unstable and inaccurate methods
 - More iterations needed compared to other methods to achieve the same error

4th Order Runge-Kutta (RK4)

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

where

$$k_1 = \Delta t f(t_n, y_n)$$

$$k_2 = \Delta t f\left(t_n + \frac{1}{2}\Delta t, y_n + \frac{1}{2}k_1\right)$$

$$k_3 = \Delta t f\left(t_n + \frac{1}{2}\Delta t, y_n + \frac{1}{2}k_2\right)$$

$$k_4 = \Delta t f(t_n + \Delta t, y_n + k_3)$$

Most commonly used Runge-Kutta method Involves using the previous solution value and weighted averages of four increments, k_1, k_2, k_3 , and k_4 , to find approximate value of solution at the next time step

Adams-Bashforth-Moulton 4th Order Predictor-Corrector (ABMPC4)

$$y_{n+1} = y_c + \frac{19}{270} (y_p - y_c)$$

where

$$y_p = y_n + \frac{\Delta t}{24} (55f_n + 59f_{n-1} - 37f_{n-2} + 9f_{n-3})$$

$$y_c = y_n + \frac{\Delta t}{24} (9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2})$$

$$f_{n+1} = f(t + \Delta t, y_p)$$

Requires four previous function values or terms to get the first calculated n+1 term, y_{n+1}

RK4 is used to find the first 4 terms, then ABMPC4 is used afterwards

Background for ABMPC4

Any **Adam-Type scheme** is of the form:

$$\frac{y_{i+1} - y_i}{\Delta t} = \beta_0 f_{i+1} + \beta_1 f_i + \dots + \beta_m f_{i-m+1}$$

Predictor-Corrector Method:

Algorithm which involves two separate steps:

- 1. Initial, commonly explicit **predictor equation** y_p , fitted to function and derivative values to approximate function value at next time step
- Implicit correction equation, y_c, that refines approximated function value by using another method, which is the
 4th Order Adams-Bashforth-Moulton method in this case.

ODE45

Built-in Matlab function that solves systems of DE

Utilizes Runge-Kutta method and a variable time step for efficiency

[t, y] = ode45(odefun, tspan, y0)

Inputs

initial condition

tspan

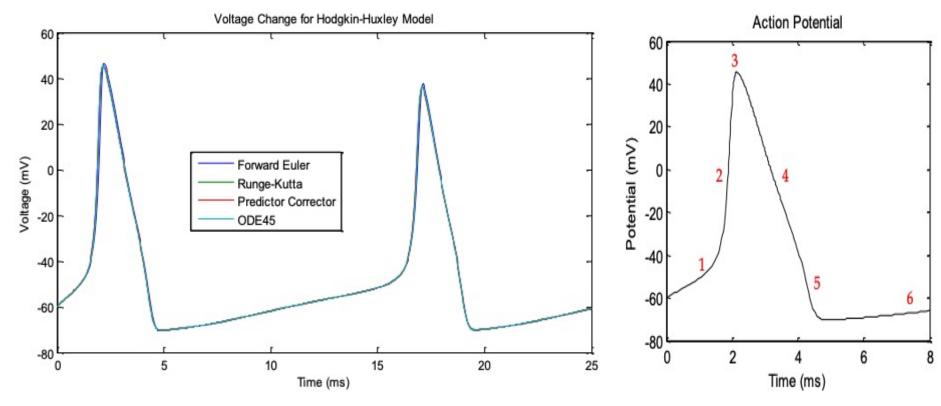
y0

function that has system of DE(s) odefun time span from t_0 to t_n .

Outputs

t	column vector with time steps
у	array with the solution values for
	each time step

Numerical Analysis



Numerical Analysis Overview

- Performed on a simplified version of model
- Appr. Solution found using all 6 methods for:

$$N = 10, 20, 40, 80, 160, 320 \text{ from}$$

 $t_0 = 0 \text{ } ms \text{ to } t_n = 25 \text{ } ms$

Average error and average order calculated

Simplified Model

• Na and K Conductance $(\overline{g}_{Na}, \overline{g}_{K})$ are 0

$$\frac{dv}{dt} = \frac{1}{C_m} \left(I - \overline{g}_{Na} m^3 h(v - E_{Na}) - \overline{g}_K n^4 (v - E_K) - \overline{g}_L (v - E_L) \right)$$

$$\frac{dv}{dt} = \frac{1}{C_m} \left(I - \overline{g}_L (v - E_L) \right)$$

Simplified Model

Since
$$\overline{g}_{Na}$$
, $\overline{g}_{K} = 0$:
$$\frac{dv}{dt} = \frac{1}{C_{m}} \left(I - \overline{g}_{Na} m^{3} h(v - E_{Na}) - \overline{g}_{K} n^{4} (v - E_{K}) - \overline{g}_{L} (v - E_{L}) \right)$$

$$\frac{dn}{dt} = \alpha_{n}(v) (1 - m) - \beta_{n}(v) m$$

$$\frac{dm}{dt} = \alpha_{n}(v) (1 - m) - \beta_{n}(v) m$$

$$\frac{dh}{dt} = \alpha_{n}(v) (1 - h) - \beta_{n}(v) h$$

Model simplifies to only:

0 supporting functions
$$\frac{dv}{dt} = \frac{1}{C_m} \left(I - \overline{g}_L (v - E_L) \right)$$

Exact Solution

$$\frac{dv}{dt} = \frac{1}{C_m} \left(I - \overline{g}_L (v - E_L) \right)$$

can be solved through separation of variables.

Solution to DE with IC: $v_0 = -60mV$

$$v = \frac{1}{\overline{g}_L} \left(-e^{\left(-\frac{\overline{g}_L}{C_m} t \right)} \left(I + 60\overline{g}_L + \overline{g}_L E_L \right) + I + \overline{g}_L E_L \right)$$

$$I = 0.1 \frac{\mu F}{cm^2}$$
, $C_m = 0.01 \frac{\mu F}{cm^2}$, $\overline{g}_L = 0.003 \frac{mS}{cm^2}$, $E_L = -49.42 mV$

Euler's Methods

N 10.00000 20.00000 40.00000 80.00000 160.00000 320.00000	h 2.50000 1.25000 0.62500 0.31250 0.15625 0.07812	error 32.93500 16.46750 8.23375 4.11688 2.05844 1.02922	observed order NaN 1.00000 1.00000 1.00000 1.00000
10.00000	2.50000	4.54066	NaN
20.00000	1.25000	2.63571	0.78471
40.00000	0.62500	1.40353	0.90913
80.00000	0.31250	0.72915	0.94477
160.00000	0.15625	0.37136	0.97341
320.00000	0.07812	0.18749	0.98600
10.00000	2.50000	2.59512	NaN
20.00000	1.25000	0.50513	2.36107
40.00000	0.62500	0.10907	2.21135
80.00000	0.31250	0.02540	2.10248
160.00000	0.15625	0.00613	2.05119
320.00000	0.07812	0.00151	2.02546

Forward Euler

1st Order Method

Backward Euler

1st Order Method

Modified Euler

2nd Order Method

RK4 and ABMPC4 Methods

N	h	error	observed order
10.00000	2.50000	0.07705	NaN
20.00000	1.25000	0.00362	4.41252
40.00000	0.62500	0.00019	4.21954
80.00000	0.31250	0.00001	4.11084
160.00000	0.15625	0.00000	4.05594
320.00000	0.07812	0.00000	4.02807

RK4

4th Order Method

N	h	error	observed order
10.00000	2.50000	0.09098	NaN
20.00000	1.25000	0.00477	4.25339
40.00000	0.62500	0.00020	4.54895
80.00000	0.31250	0.00001	4.69306
160.00000	0.15625	0.00000	4.78594
320.00000	0.07812	0.00000	4.89295

ABMPC4

4th Order Method

Average Error and Order

Method	Paper's Average Error	Average Error	Average Order
Forward Euler	0.034984	10.80680	1
Backward Euler	_	1.64465	0.91960
Modified Euler	-	0.54039	2.15031
RK4	1.0155e-7	0.01348	4.16538
ABMPC4	1.2004e-8	0.01599	4.63486
ODE45	3.0036e-4	0.00589	0.05527

Coding Difficulties

- Numerical Analysis and Exact Solution not coded
- Calculation to find average error and order not implemented
- Forward and Backward Euler Methods were not analyzed in original paper

N	h	error	observed order
10.00000	2.50000	0.00521	NaN
20.00000	1.25000	0.00521	0.00000
40.00000	0.62500	0.00792	-0.60583
80.00000	0.31250	0.00534	0.56944
160.00000	0.15625	0.00738	-0.46633
320.00000	0.07812	0.00430	0.77907

ODE45

Conclusions

- Hodgkin-Huxley Model is important to understanding action potentials
- Simplifying the model made numerical analysis possible
- Numerical Methods ranked worst to best at approximating the solution:
 - 1. Forward Euler
- 4. RK4
- 2. Backward Euler
- 5. ABMPC4
- 3. Modified Euler
- 6. ODE45

References

Siciliano, R. (2012, June 3). The Hodgkin-Huxley Model: Its Extensions, Analysis and Numerics.

Predictor-corrector method. (2020, May 10). Retrieved from https://en.wikipedia.org/wiki/Predictor-corrector_method

Odefun. (n.d.). Retrieved from https://www.mathworks.com/help/matlab/ref/ode45.html

Hodgkin-Huxley model. (2020, November 16). Retrieved from https://en.wikipedia.org/wiki/Hodgkin-Huxley_model

Sauer, T. (2012). Numerical Analysis. Boston: Pearson Education.

Squid giant axon. (2020, August 30). Retrieved from https://en.wikipedia.org/wiki/Squid_giant_axon

LeVeque, R. J. (2007, April 25). Error_table.m. Retrieved from http://faculty.washington.edu/rjl/fdmbook/matlab/error_table.m

Thank you, Professor Gottlieb, for providing the base code necessary for most of the numerical analysis!